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Abstract. The reliability of a newly developed algorithm for the identification of the P300 

component of event-related potentials based on a continuous wavelet transform was investigated. 

The electroencephalogram records of one participant made by using a three-stimulus paradigm 

(a kind of the odd-ball paradigm) were analyzed. The accuracy of identification of certain 

wavelet types for the detection of P300 was from 76.32 to 86.84%. Thus, relatively simple 

algorithms for processing and classifying the electroencephalogram record signal show 

acceptable results in terms of the accuracy of identification of the P300 component of event-

related potentials based on randomly selected data. 

1.  Introduction 

Neurotechnologies, such as neurocomputer interfaces (NCI), are an important branch of modern science. 

One of the main concepts for the development of neurocomputer interfaces (NCI) using 

electroencephalogram  (EEG) is the use of the P300 component of event-related potentials (ERP) that 

occurs as a human brain response to the presence of the external visual stimuli [1]. A number of ongoing 

studies are dedicated to the improvement of algorithms for classifying the components of the ERP-wave 

[2-4]. 

For researchers, it is becoming a common practice to share in the public domain the datasets received 

using expensive lab equipment or in complex experiment conditions. This might be the next step in 

science development. In our research, we used the data published in the public domain by the following 

group of scientists: L. Vareka, P. Bruha, R. Moucek [5]. The datasets are available at: 

ftp://climb.genomics.cn/pub/10.5524/100001_101000/100111/ 

2.  The objective of the research 

The objective of this research is to determine the reliability of the algorithm developed by us for the 

identification of the P300 component of ERP which is based on the continuous wavelet transform by 

using publicly accessible EEG recording datasets. Another objective is to estimate the effect of the 

number of target stimulus presentations on the identification accuracy. 

3.  Materials and methods 

A wavelet is a function 𝜓(𝑡) which satisfies the following conditions: 

∫ 𝜓(𝑢)𝑑𝑢 = 0

∞

−∞

,    ∫ 𝜓2(𝑢)𝑑𝑢 = 1

∞

−∞

. 
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When these conditions are met, there should be an interval [−𝑇, 𝑇] outside of which the function 

𝜓(𝑡) is close to zero. As a result, we obtain a wavelet, i.e. a time-limited wave. 

Wavelets can be applied as a simple and fast classifier of waveforms in a signal [6]. The continuous 

wavelet transform allows identifying sequences of different waveforms in the signal in question. Many 

different wavelets with a wide area of applications have been created. They include Morlet wavelets, 

Daubechies wavelets, "mexican hat" wavelets, etc. The Matlab wavelet toolbox presents 16 different 

wavelet families. Figure 1 shows the wavelets that we used in our research. 

 

 
a) db4    b) db5    c) db6 

 
d) sym6   e) rbio3.5 

Figure 1. Wavelets used in the research. 

The continuous wavelet transform (CWT) of a signal 𝑥(𝑡) ∈ 𝐿2𝑅 is defined as a dot product between 

the signal and the wavelet functions 𝜓𝑎,𝑏(𝑡): 

С𝑎,𝑏 = < 𝑥(𝑡), 𝜓𝑎,𝑏(𝑡) > 

where С𝑎,𝑏 - coefficients of the wavelet transform;  𝜓𝑎,𝑏(𝑡) - scaled and translated wavelet 

function 𝜓(𝑡): 

𝜓𝑎,𝑏(𝑡) =  √|𝑎| 𝜓 (
𝑡 − 𝑏

𝑎
) 

where 𝑎 − scale; 𝑏 − translation. 

The CWT gives a decomposition of 𝑥(𝑡) in different scales which have maximum values at those 

scales and times where the form of the signal 𝑥(𝑡) is similar to that of the wavelet function𝜓(𝑡). The 

continuous wavelet transform was performed with the Matlab cwt() function. 

We used the One Rule classification algorithm which is an algorithm of the decision tree category. 

One Rule is a simple classifier that makes a decision based on one parameter which shows the least 

number of errors when training the classifier. This algorithm is widely known and used for obtaining 

well-interpreted results [7]. 

The EEG signal database used in our research contains 19 datasets. Each dataset is an EEG record 

of one participant made by using a three-stimulus paradigm which is a variation of the odd-ball 

paradigm [8]. All data were recorded by electroencephalograph (make of device is not specified) with 
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19 channels and presented in BrainVision format. Flashes of three (red, green and yellow) LED 

indicators were used as visual stimuli. Stimuli were presented in a random order with a predefined 

frequency distribution: 83% of non-target stimulus presentations (red LED flash), 13.5% of target 

stimulus presentations (green LED), 3.5% of distracting stimulus presentations (yellow LED). The 

stimulus duration was 500 ms, the inter-stimulus interval (ISI) was 1000 ms. The experiment was 

conducted in three phases with a short break, and each test subject was presented with 30 target stimuli.  

A detailed description of the experimental design is given in the paper [5]. 

In our research, we used datasets with numbers 76, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 

101, 102, 104, 105, 106 and the EEG derivation Pz the form of the signal from which has usually the 

greatest characteristic intensity of the P300 component. We selected epochs with numbers 2 and 4 in 

these datasets which correspond to the presentation of a target and non-target stimulus respectively. To 

classify stimuli, we chose the db4, db5, db6, sym6 and rbio3.5 wavelets (figure 1) due to the visual 

similarity of these wavelets to the ERP-wave form (figure 2). 

 

 

 

 

 

Figure 2. ERP-wave generated as a human brain 

response to the presence of a target visual 

stimulus. 

When preparing the EEG signal for classification, we selected four samples of data from each dataset 

containing 5, 10, 15 and 20 target and non-target epochs from the beginning of the EEG signal. The 

epoch duration was from 230 to 700 ms from the start of the stimulus presentation. Then we averaged 

the selected target and non-target epochs in each dataset. Next we processed the averaged epochs by 

using the continuous wavelet transform with scale coefficients of 1:2:128. We assumed the total of the 

maximum values of the coefficients of the wavelet decomposition at each time point as a summarized 

indicator for further classification: 

𝑆 =  ∑ max (С𝑎,𝑏)

𝑤

𝑏=1

 

where С𝑎,𝑏 - CWT coefficients; w - time window width. 

4.  Results and discussion 

We processed the obtained set of summarized indicators based on the One Rule algorithm using a 

statistical data processing program R (https://www.r-project.org/) and the OneR package (https://cran.r-

project.org/web/packages/OneR/). 

The accuracy of identification of the target stimulus in each dataset corresponding to the presentation 

of 5, 10, 15 and 20 target stimuli is shown in tables 1-4 and figure 2. The maximum accuracy values are 

shown in bold italics. 

Table 1. Accuracy of identification of the target stimulus, %.The number of target 

stimulus presentations: 5. 

Wavelet db4 Wavelet db5 Wavelet db6 Wavelet sym6 Wavelet rbio3.5 

76.32 76.32 78.95 73.68 65.79 
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Table 2. Accuracy of identification of the target stimulus, %. The number of target 

stimulus presentations: 10. 

Wavelet db4 Wavelet db5 Wavelet db6 Wavelet sym6 Wavelet rbio3.5 

76.32 76.32 76.32 76.32 76.32 

 

Table 3. Accuracy of identification of the target stimulus, %. The number of target 

stimulus presentations: 15. 

Wavelet db4 Wavelet db5 Wavelet db6 Wavelet sym6 Wavelet rbio3.5 

84.21 84.21 86.84 84.21 76.32 

 

Table 4. Accuracy of identification of the target stimulus, %. The number of target 

stimulus presentations: 20. 

Wavelet db4 Wavelet db5 Wavelet db6 Wavelet sym6 Wavelet rbio3.5 

78.95 78.95 81.58 81.58 71.05 

 

 

Figure 3. Accuracy of identification for each wavelet. The numbers above the histogram 

columns indicate the number of the presented target stimuli. 

Since we used a small number of datasets (19 datasets with 2 characteristics — target and non-target 

epoch), when calculating the accuracy, we obtained discrete levels with the increment of 
100%

2×19
≈ 2.63 %. 

This can explain the same identification accuracy for all wavelets in table 2 — the identification 

accuracy values for 10 presented stimuli fell into the same range during classification (75.0-77.6 %) 

with an average value of 76.32 %. 

The identification accuracy is not significantly affected by the selected wavelet. The db6 wavelet 

showed the highest identification accuracy in all datasets, i.e. for any number of the presented target 

stimuli. The identification accuracy of the db6 wavelet ranged between 76.32 and 86.84 %. 

We can see that when the number of target stimulus presentations increases from 5 to 15, the 

identification accuracy goes up as well. When the number of target stimulus presentations further 

increases up to 20, the identification accuracy decreases for all wavelets. We assume that such decrease 

in the identification accuracy may be caused by increased fatigue of the participants. 
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5.  Conclusion 

In this investigation, we have found that relatively simple algorithms for processing and classifying the 

EEG signal show acceptable results in terms of the accuracy of identification of the P300 component of 

ERP based on randomly selected data. One of the advantages of the suggested method is a high 

interpretability of the results. Such algorithms can be used in researches where understanding the 

obtained results is more important than the identification accuracy. 
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